The Complexity Map

Mark W. Hissink Muller
DNV-CIBIT (Det Norske Veritas)
Bilthoven, The Netherlands
mark.hissink.muller @dnv.com

Abstract

The Complexity Map describes a way of organizing and
looking at software architectures, focusing on the integration
of functional ’areas of responsibility’. When an application’s
source code is structured according to the Complexity Map
layout rules, a visualization which is deemed understandable
for non-technical users, can be automatically generated from
the source code by the Complexity Map application. Using
this visualization, quality and project management related
attributes can be visualized in the different sections of the
application, providing easy overview into the status of these
attributes for end users, developers and management. The
Complexity Map application is available under open source
license from http://complexitymap.com.

1. Introduction

In our globalizing and increasingly networked economy,
organizations and their business processes are becoming
more and more intertwined. Many of the applications that
support these business processes have interfaces with other
systems, both within the same organization as beyond. As
the number of applications and processes that are integrated
increases, the importance of addressing the integration of
applications in a way which is suitable for later changes
increases likewise.

As is argued in [1] and [2], organizations are learning
that a visual overview of their organization application land-
scape helps business managers and architects to govern (in
particular manage the integration aspects of) the application
portfolio. Although for a whole portfolio of applications,
this insight is becoming more common, within an application
and its software architecture, a visual approach of laying out
the application is not always seen. Software architectures
which are not laid out according to the most efficient func-
tional approach lead to systems that are more difficult and
thus more costly to maintain and change.

This paper presents an approach which we claim helps

effective design of software architectures for applications
where integration is a predominant aspect. Based on this
design approach, we present an application that visualizes
architectures which follow the Complexity Map layout guide-
lines. The application can be used to monitor the amount of
technical debt [3] in an application in a way which should be
easy understandable by non-technical managers and which
will help them to use this information in the decision making
process.

This paper is structured as follows. Section 2 describes
the symptoms which led to the development of the Com-
plexity Map [4]. Section 3 introduces the Complexity Map
diagramming style, which is used in section 4 to show qual-
ity attributes can be added to the visual representation of the
source code to manage technical debt. Section 5 describes
the current functionality of the Complexity Map application
and future directions for development. Section 6 concludes
this article.

2. Symptoms from the industry

The basis for the work presented in this paper is found
in the following problematic symptoms, which have been
encountered in certain applications in the industry during
DNV-CIBIT’s audit and consulting engagements. For rea-
sons of confidentiality, no reference can be made to the actual
applications or organizations where these symptoms were
found.

e Architectural diagrams are often too informal in nature
(regarding the structure that is described) and lack the
use of direction as a means to add information about
architecture that is described.

e The gap between how a business user views the appli-
cation structure and the actual situation is not always
minimal, as it should. Business people should, when
explained, be able to recognize various parts of an ap-
plication which support a business process, down to the
lowest level.

e Naming of areas of responsibility is underappreciated
in the design and construction of (in particular) admin-
istrative systems. Semantics, or giving things the proper
name, is a notoriously hard topic and project managers
allow very little time to adapt and refactor an applica-
tion when later insights occur.

e Functional decomposition is not always leading over
technical decomposition, as it should. Developers tend
to naturally use technical concepts to apply ordering
at the lower levels of the structure of an application.
A striking example often found is the segmentation
according to the model, view and controller paradigm
[5], which results in application packages with equal
names; not a good practice.

e A conceptual model of the application does not always
span the entire end-to-end system, as it should, but often
focuses on a part in isolation, e.g. the application’s
domain model.

3. Complexity Map diagramming style

The Complexity Map diagramming style, as presented in
this section, addresses the symptoms and concerns discussed
in the previous section.

3.1. Layout principles and rules

Applications which are laid out according to the Complex-
ity Map diagramming style adhere to the following rules.

e Overall context is relevant. A namespace hierarchy
is used to bind all areas of responsibility to a single con-
ceptual tree. In a two-dimensional layout, this concept
results in boxes within boxes.

e Horizontal direction of the visualization is relevant.
The map is read from left to right. Users and systems
that use the particular system are positioned on the left
hand side of the architecture, systems that are used by
the system are positioned on the right hand side. In this
way, the internals of the application’s software architec-
ture mimic the systems which surround the application.

o Vertical direction of the functional areas is relevant.
The map is read from top to bottom. Functionality
that is either more important or used earlier in time is
positioned higher, functionality that is used by other
packages is positioned on the lower side.

e The first ordering is technical, the further layering
functional. The technical layers follow a pre-defined
structure.

Using these layout rules, figure 1 shows an example of
the Complexity Map diagramming style for an imaginary
software architecture of the Amazon’s online bookstore [6].
On the left hand side of the figure, from top to bottom, areas
for the web-user, message and batch jobs which use the
system are indicated. On the right hand side of the figure,
areas where integration with the external and internal sys-
tems and the database is handled are displayed. Within the
outer structure in the application (com.amazon.store)
the technical layers for service(s), domain objects,
integration and persistence layers are also explic-
itly positioned. The boundaries of the various areas of re-
sponsibility are indicated by the thick frames.

com.amazon.store. External
web. service. domain. integration. Systems
I browse. I O+ I customer I I customer I I amex I o
O >
I payment. I I billing I I product I I paypal I
partner ! visa I
message. I: Internal
=] bulkorder. shipping dhl
Systems
ersistence.
batch. o —
@ e b)
product

Figure 1. Amazon architecture

Reading the diagram from the outside inwards,
the abbreviated position of a ProductService im-
plementation in the namespace hierarchy would be:

..store.service.product.ProductService,

The diagram intends to serve as a source code package
design, guiding the development team during application
construction.

3.2. Generating a visualization from code

If an application is laid out according to the Complexity
Map layout rules, a directed visualization can be generated
automatically from the application’s source code. Figure 2
shows the Amazon architecture in a diagram generated from
source code by the Complexity Map application using its
MatrixPaneLayout TreeMap-positioning algorithm.

It is always possible to visualize source code using the
Squarified Treemap [7] algorithm (of which no example is
displayed in this paper), but when an application is laid out
according to the Complexity Map layout rules, it is possible
to create a directed map (as displayed figure 2) which - as
we argue - has added value.

‘Application Architecture

[customer]

[)
[producc | L bl J
[J

\
‘message. [wishlist ‘
[“bulkorder |

payment

batch. [product]
expart Shoppinghistory
[wishlt]

Figure 2. Generated wireframe visualization

4. Managing technical debt

When aggregated quality attributes are added to the Com-
plexity Map wireframe visualization, the result can be used
as a management dashboard of technical debt, useful for
guiding application development (see 4.2).

4.1. Visually indicating quality attributes

When both business and technical users use the same
visual model to think about the application and its integration
challenges, this visual representation can be used to indicate
quality attributes, as is shown in figure 3.

payment

Figure 3. Quality indicated

From this Amazon-example, it shows that the quality for
the application is sufficient (green or yellow) in many areas,
but that there are some challenges (orange or red), mainly in
the areas of integration with external systems and where the
integration with the database is solved.

Although these diagrams were created using a mockup
and no actual Amazon source code was used in the pro-
cess, the benefits are clear. Attributes in color added to the
diagram, provide an overview at a glance, showing non-
technical stakeholders about (quality) problem spots. More
problematic findings per area will turn an area of responsi-
bility from green, via yellow and orange to eventually red,
where thresholds can be set by the user.

The (quality) indications will allow business owners or
management, who understand the wireframe representation
of the source code, to ask questions like: "Why was this
area colored yellow?”, ”What extraordinary problems in the
source code justify the red color for this area?” or ”What
do we need to do to make all boxes yellow or green?”.

As a basis for the color indication, currently software
metrics and other measured findings which are collected
using open source tools, are used. Metrics can be presented
in various layers, either individually or in aggregated form.
Since some metrics are, within a certain context, more impor-
tant than others, metrics can be weighted before aggregation.
The summarized complexity torque (or the amount of ’pres-
sure’ due to complexity) for a certain area of responsibility
is used to color the area. The selected sensitivity scale of
the Complexity Map selects the intervals which are used for
the various colors. This functionality can be used by the end
user to perform sensitivity analyses.

4.2. Guiding application development

As managers are using the Complexity Map to guide their
teams and developers little by little remove an application’s
technical debt, the relative weight of the negative findings
which underlie a certain coloring can be modified, thus in-
creasing the team’s ambition level. The development team’s
output bar is raised, which will lead to applications which are
better maintainable and eventually, better skilled developers.

When a business manager gets a little bit more involved
(in a white box way) with how an application he/she’s re-
sponsible for is structured, it will ease - we argue - the overall
life cycle management of the application.

5. Complexity Map application

The concepts presented the previous sections have been
implemented in the Complexity Map application, for which
a working proof of concept is available in the Java-language
[8]. Although it relies on several third party components,
notable is Prefuse [9], a toolkit which greatly eases the cre-
ation of impressive visualizations. Current features of the
Complexity Map application include:

e support for static or dynamic source code measurement
tools via adapters

e displays source code violations in individual or aggre-
gated and weighted layers

e contains a zoomable interface to allow quick analysis
of large scale enterprise codebases

e drill down to the individual finding-level (and sideways
from this level) for detailed analysis

e save layers of findings for historical trend analysis

The current version of the Complexity Map application
uses Checkstyle [10] and PMD [11] to analyze source code
of Java applications.

For applications which need to be visualized using the
Squarified Treemap layout (since their architecture was not
created with the Complexity Map layout rules in mind) it
is still possible to visualize attributes of the source code in
multiple layers. Building on the work presented in [12],
the Complexity Map application allows various layers to be
aggregated to one weighted, summarized layer, which will
ease and allow for quick management interpretation.

The Complexity Map application proves to be valuable
when used in industrial context, in particular for initial anal-
ysis of large codebases. The seamless zoom functionality
allows large codebases to be analyzed quickly, whereas the
drill down functionality allows findings to be considered per
area of responsibility or for the codebase as a whole and to
be sorted by e.g. severity of the violation or by category.

Possible future extensions or additions to the Complexity
Map application could entail; support for more programming
languages, support for used-added findings or complexity
trend analyses based on Complexity Maps taken at various
moments in time.

The Complexity Map application is available under
GPLvV3 license [13] from [4].

6. Concluding remarks

For applications which need to integrate with more than
just a simple database, a conceptual map of the application
will help facilitate the discussion about the correct position
of functionality and provide a common understanding of the
system for both end users as the development team.

The Complexity Map describes a way of organizing the
application’s software integration architecture, which can
be visualized using the Complexity Map application. The
colored quality indications allow technical debt to be identi-
fied by management and kept at low levels which will keep
applications fit for change.

The Complexity Map application is available under
GPLv3 license and developers are invited to contribute.

References

[1] Matthijs Maat, Jochem Schulenklopper, and Gert
Florijn. IT Landscape Photography vital for deci-
sion making. DNV-CIBIT website (http://www.
cibit.com), 2007.

[2] Jiirgen Laartz, Ernst Sonderegger, and Johan Vinck-
ier. The Paris guide to IT architecture. The McKinsey
Quarterly, August 2000.

[3] Ward Cunningham (quoted by Martin Fowler). Tec-
nical Debt. http://www.martinfowler.com/
bliki/TechnicalDebt.html.

[4] Mark W. Hissink Muller. The Complexity Map applica-
tion. http://complexitymap.com, 2007-2008.

[5] Frank Buschmann, Regine Meunier, Hans Rohnert,
Peter Sommerlad, and Michael Stal. Pattern-Oriented
Software Architecture Volume 1: A System of Patterns
(Hardcover). Wiley, 1996.

[6] Amazon online bookstore. http://www.amazon.
com.

[7] D.M. Bruls, C. Huizing, and J.J. van Wijk. Squarified
treemaps. Proceedings of the joint Eurographics and
IEEE TCVG Symposium on Visualization, pages 33-42,
January 2000.

[8] James Gosling, ea. The Java Programming Language.
http://java.sun.com, 1996-2008.

[9] Jeffrey Michael Heer. The Prefuse Visualiza-
tion Toolkit. http://vis.berkeley.edu/
papers/prefuse/, 2005.

[10] Oliver Burn, ea. Checkstyle. http://
checkstyle.sourceforge.net/, 2001-2007.

[11] InfoEther. PMD - don’t shoot the messenger. http:
//pmd.sourceforge.net/, 2002-2008.

[12] D. Holten, R. Vliegen, and J.J. van Wijk. Visual Re-
alism for the Visualization of Software Metrics. 3rd
IEEE International Workshop on Visualizing Software
for Understanding and Analysis (Proceedings of VIS-
SOFT 2005), pages 27-32, January 2005.

[13] GPLv3 License. http://www.gnu.org/
licenses/gpl-3.0.html.

